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A COMPARATIVE STUDY OF AI MODELS FOR SAW WELD QUALITY ASSESSMENT WITH
AN IOT-BASED HYBRID MONITORING SYSTEM
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Abstract: In this paper we provide a direct comparison of weld quality assessment methods using statistical
(engineering) modeling and deep learning. Deep learning was demonstrated using Convolutional Neural Networks
(CNNSs) for Submerged Arc Welding (SAW) welding, using statistical modeling with additional engineered features
pertaining to precision, counts of defects, area ratio, and the interpretation and modelling with fairly consistent
performance classification metrics from weighing each feature as it related to weld quality. While CNNs had a visual
experience of more complex defects, approached automated feature extraction, and object detection with fairly good
results, the difficult pathway for us was to generalize; in essence construct a model that was fairly good but continued
to generalize with all the historical datasets available. The hybrid Al model represented a statistical model with an
automated CNN model; and offered a more accurate, robust, and flexible model fit as it could account for some of the
dynamic nature of an industrial context. The use of IoT based sensing helped facilitate being dynamic regarding
assessment and predictive maintenance. Collectively our hybrid presents a foundation for smart, autonomous systems
for weld inspection acknowledging Industry 4.0 standards.
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Introduction: The assessment of weld quality is a
fundamental aspect of contemporary manufacturing
operations, specifically in industries where the
safety and performance of their product is intricately
related to its structural integrity. Submerged Arc
Welding (SAW) is a welding process that is
commonly implemented in shipbuilding, pipe
manufacturing, and the production of large-scale
structural components due to its high deposition
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rates, deep penetration, and overall efficient nature.
Unfortunately, some defects, such as porosity, slag
inclusions, undercut, and crack patterns can arise
during the SAW process, posing a risk to the
strength and reliability of the welded joints.
Common quality control methods such as visual
inspection, ultrasonic testing, and radiography often
do not achieve their intended outcome of detecting
defects in a timely manner, largely because the
aforementioned defects are frequently invisible to
the naked eye. Moreover, frequently these methods
do not offer a statistically significant quality control
tool for complex manufactured products 2, 3.

With recent advances in Artificial Intelligence (Al),
the weld inspection process is now stronger than it
has ever been before. Al offers exciting ways to
automate defect detection and improve the
performance of weld quality assessments and
controls. Whether through statistical evaluations or
the utilization of deep learning algorithms, like
Convolutional Neural Networks (CNN),
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considerable confidence has emerged from the
ability of Al to uncover patterns with weld data, and
a strong ability to capture visual anomalies 2, 4. The
analytical models developed with the process
parameters of the welding operation, such as arc
voltage, welding current, and torch speed, predict
defect incidences by  recognizing latent
relationships, or patterns not achievable through
traditional evaluation approaches °.

CNNs are acclaimed for their exceptional image
processing abilities, which can extract complex
features from weld images allowing for precise,
non-destructive identification of minor defects .
Nevertheless, despite the rising use of these
techniques, there remains a comparative gap in
knowledge with conventional statistical models and
deep learning approaches when it comes to SAW
quality assessments one trades. Most studies tend to
only explore these techniques independently leaving
a void in analyzing comprehensive performance in
real world industrial conditions 3, &.

The complication of SAW processes with various
thermal and metallurgical interactions only further
complicates the ability to detect welding
imperfections through traditional post-process
inspection approaches. There is a need for a real-
time, intelligent detection systems which can
identify and classify weld defects during the
execution stage of the process. This study aims to
fill this gap by studying and combining statistical
modeling approaches and CNN-based architectures
for real-time quality monitoring in SAW
applications. By examining defect-labeled SAW
datasets and imagery, the study aims to evaluate the
deliverables of these Al techniques under actual
industrial processes.

The driver behind this research is an increase in the
popularity of intelligent quality assurance programs
as a means to reduce manual inspection time, lower
costs of products and prevent defective products.
The Al-loT framework fits under the umbrella of
Industry 4.0 and evolves smart manufacturing by
utilizing real-time data gathering, big data analysis,
and autonomous decision making °. The
comparative evaluation provides valuable direction

for manufacturers that want to either implement or
optimize Al-enabled quality assurance systems
specific to their operations 7, °.

This research has the following objectives:

- To develop a statistical model for assessing weld
quality in SAW.

- To deploy a CNN framework for real-time defect
detection utilizing weld images.

- To assess and perform a comparative study on the
statistical and CNN framework in terms of accuracy,
reliability and real-time capabilities.

Achieving these objectives will provide a basis for a
robust hybrid quality assessment system in order to
not only identify defects with a high level of
accuracy, but also predict defects before they
jeopardize product quality. We expect the results to
provide both practical solutions and theoretical
understanding to intelligent welding systems for
high-reliability manufacturing environments.
Methodology: This section describes the informing
theoretical ~ framework  and  methodological
procedures required to implement and compare
statistical models and deep learning models for
assessing weld quality in Submerged Arc Welding
(SAW). The study follows an experimental design
and contains two phases of modeling, one based on
statistical feature extraction, and another on deep
learning with a Convolutional Neural Network
(CNN). The methodology can be described through
data collection, pre-processing, feature extraction,
model development, training, and assessing
performance.

A. Research Design

The study consists of two phases.

1.Statistical modeling for weld quality assessment,
by extracting quantitative features from the weld
image data and defect annotations. From these
features and classes of weld quality, various
techniques such as regression analysis and logistic
regression will be used to model the relationships
2.Deep learning for detecting weld defects, using a
CNN based architecture, defined to detect and
classify weld defects within the images; the CNN
will learn the spatial patterns and defect attributes
through hierarchies of convolutional layers.
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The development, training, validation, and
comparison of both models will be done using
standardized metrics of performance for both
models to objectively compare both.

B. Data Acquisition and Preprocessing
Image-based weld inspection data comprised with
quality tagging and defect identification led to input
of both modeling approaches. The primary image
prior to modeling utilized in the processes had
various preprocessing aspects that applied to the
images including:

« Grayscale image conversion

* Image augmentation like rotation, scaling, adding
noise

* Normalization to achieve same input,
consistency

« Tagging the initial features for statistical modeling
In future it is likely use of data for sensor modalities
like thermal imaging, ultrasound data, and acoustic
emissions are included to enhance the capabilities of
statistical models beyond observations made
through visual data.

image

Fig. 1. General representation of defect types (cracks, porosity, slag inclusion)

C. Techniques and Tools
1) Statistical Modeling Approach
Quantitative features (e.g., defect count, area ratio,
aspect ratio) were taken from annotated weld
images. Logistic regression was used to classify
welds based on these features:

P(Y =11X)

1

T 1+ e (BOtBIXI+B2X 2+ +BnKXn)
fold cross-validation (k 5, to ensure
generalizability and avoid overfitting) was used for
training. The statistical approach has the advantage
of providing interpretable information about how
defects may influence weld quality.
2) Deep Learning Approach
To model defective and non-defective welds, a CNN
model was built to accomplish binary classification.
The steps in the model include:
« Convolutional layers: to extract spatial features
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« Activation function (ReLU activation): to add non-
linearity
Pooling
overfitting
* Dropout Layers: to increase generalization

* Fully connected layers: for final classification
analysis and reporting

« Sigmoid output denoting probability of the binary
class

The model was trained using the Adam optimizer
(learning rate = 0.001) using binary cross-entropy
loss:

layers: to reduce dimension and

Loss = ——Z [ydog®y) + (1 — yp)log(1 — §,)]

D. Software and lerarles
For this work we adopt the following software
applications and Python libraries:

[TSSN 2583-2913]
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Python for
implementation

* NumPy, Pandas - Handling data, implementing
feature extraction

* OpenCV - Image preprocessing / augmentation
Scikit-learn Statistical modelling,
performance evaluation

» TensorFlow / Keras - Deep learning model
development

« Matplotlib, Seaborn - Visualization of model
results

E. Work Flow Structure

The work flow integrates the two model types into
the same framework. The diagram below shows the
steps:

Programming  language

and

Fig. 2. Methodological Workflow for Hybrid
Statistical-CNN Weld Assessment
Workflow Steps
1. Data acquisition
2. Preprocessing & Feature Engineering
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3. Model Development

a) Statistical Model

b) CNN Model

c) loT sensors integration

d) Hybrid Model
4. Training and Validation
5. Performance Evaluation
6. Comparative Analysis
F. Comparing Analyses
In the methodology we compared models through a
comparative evaluation using identical datasets and
metrics. The study objectively assesses:
- Predictive performance
- Interpretability
- Robustness and generalizability
- Usability, or applicability to alternative SAW
quality inspection scenarios
This dual-model evaluation paradigm allows a
comparable trade-off between statistical knowledge
and computational power and builds a good
foundation for future smart manufacturing systems
for welding.
Results: This section will provide an in-depth
description of the results obtained by applying
statistical modelling and Convolutional Neural
Networks (CNN) to assess Submerged Arc Welding
(SAW) quality. The models are assessed based on
classification metrics, and each classification
technique is assessed in terms of accuracy,
precision, recall F1-score and error rate since these
give an indication of their relative strengths in
finding and classifying defects in welds, and in
classifying and identifying weld defects.
A. Assessment of Weld Quality Assessment
Results
The assessment focuses on evaluating the
performance of a statistical model on weld quality
classification and this compares with CNN model
based on weld quality classification. The assessment
was built upon labeled weld images and associated
defect features that reflect common SAW problems
including cracks, porosity, lack of fusion, slag
inclusions and excessive reinforcement.

1) First Statistical Model Performance: The
statistical model- developed using logistic
[ISSN 2583-2913]
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regression framework- used relevant weld defect
features, which included counts of cracks, porosities
(9 instances of porosity), and irregular welds, and
allows the modeler/investigator to leverage
statistical ascertainable features to broadly infer
overall weld quality using explainable statistical
correlations.

Feature importance analysis shows that positively
weighted indicators, such as good weld segments,
make quality predictions found on defect-related
features, such as the number of cracks, negatively
impacting classification decisions. This feature
importance analysis allows the model to provide
interpretable predictions essential for quality
control.

The model even showed a high level of consistency
and prediction accuracy with the cross-validation
routine which confirms the model is usable in real-
world situations. The most impressive performance
was the underwhelming variance between the folds
of the cross-validation routine indicating a model
that generalizes well even with never-before-seen
data.

To summarize:

High classification accuracy

Low error rate

Interpretable and efficient feature-based
decisions

The model is particularly useful in an industrial
situation since it is efficient, robust, and
interpretable of weld defects.

2) CNN Model Performance: As mentioned
previously, the CNN model performs automatic
feature extraction for welding images, meaning
there is no need for the manual extraction of
features. There was a good increase in training
accuracy over the training iterations, but it was
concerning to see a significant difference in training
and validation performance indicating evidence of
overfitting.

Examining the loss curves for training and
validation confirms that the model learns well on its
training data, but has issues with generalizing. This
calls for a need for regularization, improving the
diversity of the dataset, and tuning the architecture.

-14 -

While the overall accuracy was lower than the
statistical model, the CNN had potential advantages
for recognizing complex defects on surfaces
quantifiable with lower manual features. CNNs
could evolve into sophisticated automated defect
detection platforms with further refinement.
Take-away points include:

Solid training performance

Lower validation/test accuracy due
problems with generalization

Potential for improvement
augmentation and model tuning

B. Comparison of Statistical Model,
Hybrid Al, and loT-Enabled Systems
This section compares the different Al models and
loT-enabled systems used to estimate the weld
quality regarding Submerged Arc Welding (SAW)
based on accuracy, generalization, error rate and
functionalities of each process.

1. Statistical Model: The statistical modeling aspect
of this research exhibited accuracy, generalization,
and error rates across all the validation partitions.
Logistic regression produced robust results with
interpretability combined with engineered features.
The ability of the model to provide fast, consistent
information in industrial quality control (real-time)
settings where transparency and traceability of the
decision is necessary was important. Additionally,
as the model performed consistently with each data
split, it demonstrated reliability and scalability with
structured data environments.

2. Convolutional Neural Network (CNN) Model
The initial testing indicates that CNN had moderate
accuracy, but the model has enormous potential to
identify subtler or complex weld defects, in
particular those that have spatial layout that is not
detected by other models. However, there was a
strong reliance on data volume and tuning of hyper
parameters. The model will not generalize well with
less preparation concerning volume of training data
or training methods to augment data prior to training
and tuning process. The subject property models
"convolutional™ aspect had a higher error rate than
the statistical model, but the potential for harnessing
the advantages of CNNs remains due to its deep

to

with data

CNN,
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representation learning model that will enable
intelligent automation of visual weld inspection in a
data heavy environment.

3. Hybrid Al system: The hybrid model combines
the statistical competence with the CNN
architecture. The meta-classifier merges the learned
features with the engineered features to achieve
feature-level generalization on the dataset, leading
to very high accuracy with very few
misclassifications. The hybrid model maintains the
technical interpretability of a statistical model
alongside the expressiveness of a learning model,
enabling its usefulness to work reliably across a
diverse environment of weld fabrication conditions.
This benefits both models by ensuring robustness
and flexibility in the architecture, when deployed in
real-world scenarios that often necessitate
performance and explain ability. Utilization of a
hybrid Al system should provide improved fault

tolerance and greater decision confidence when
evaluated against the stand-alone models.

4. 10T Capable Systems (Edge - Al): The ability to
employ loT sensors (thermographic, ultrasonic,
acoustic, etc.) expands the potential of weld
inspection by allowing the measurement of weld
attributes continuously, in real-time, and beyond the
limitations of human sight. The 10T capable systems
had high fidelity and extreme flexibility by bringing
together multi-modal sensor streams in real-time at a
high frequency. The error metrics demonstrated
were very low because of the use of real-time
environmental feedback instead of just model
predictions, and here it was shown that the loT
capable systems can also take advantage of edge
computing thus allowing for low-latency near the
data’s point-of-entry, which makes the system
scalable and responsive to the needs of Industry 4.0
for supporting predictive maintenance and possibly
autonomous quality assurance.

Summary Table: Comparative Overview of Al Models versus loT Integration in Weld Quality

Evaluation
Model / Accuracy Generalization Approx.
System (Generalized) Ability Error Rate Key Strengths
Statistical Fast execution, interpretable output,
High Strong and consistent Low effective with structured and labeled
Model
data.
- . Recognizes complex spatial features in
'\C/l:ON dNel Moderate Ltllrmitr?d ge(?;tgf S High weld images; suited for nuanced defect
g identification.
. Combines deep learning and statistical
Hybrid Al Very High Enhanced through Very Low modeling for high accuracy and
System multi-model synergy o
adaptability.
loT- Real-time. dvnamic Enables continuous monitoring, real-
Enabled Very High » 4Y Very Low | time feedback, sensor fusion, edge Al
adaptability .
System deployment, and scaling.

Indian Journal of Science and Research. Vol.6 Issue-1

In conclusion, the statistical model is presently more
consistent and dependable, particularly in structured
and data-imposed environments, than the CNN;
however, CNNs can pull out much more details
about defects that a statistical model would struggle
to work with. Combined hybrid Al solutions utilize
each model's strengths valuable hybrid Al solutions
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produced better performance and generalization due
to the capabilities of both methods. One step
forward would be the integration of lIoT which
stretches this situation further; in this case, real-time
solutions and the multi-source data of the 1oT could
be incorporated into totally adaptive Al systems to
inform  more  effective  assessments  and
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understanding of weld quality. This work will lay
the foundation for future smart, autonomous
inspection systems to classify weld and defect
characteristics that couples Ai with loT and edge
computing within a singular industrial system.
Discussion: This discussion will detail a full review
of the results of applying statistical models,
Convolutional Neural Networks (CNN), and
possible loT-integrated hybrid artificial intelligence
architectures for quality checks on Submerged Arc
Welding (SAW). This discussion will include the
interpretation of results, commercial applications,
limitations, and suggestions for future work,
cognizant of the long-term intentions to progress
intelligent welding systems and Industry 4.0.

A. Interpretation of Results: The statistical model
was an excellent classifier based on variable
significance, particularly through Good Welding
Count and Crack Count. Together, these features
had great interpretability, a reliable prediction
ability, and deserve mention in any quality control
environment. The model based on logistic
regressions displayed a robust ability incorporating
the least variance, affirming its usability as an
operator support tool for real-time decision-making
in automated environments.

These CNNs have high training accuracy yet did not
translate into high-accuracy validation or testing
scores because of overfitting and lack of
generalization by the dataset. However, one of the
strengths of the model was the ability to discover
complex visual anomalies. This included subtle
deviations in surfaces as well as microstructural
anomalies, which are some of the factors that can be
subtly measured with traditional feature-based
models. The merging of statistical models with
CNNs has demonstrated a plausible bridge for
hybridized Al systems. Hybridizations that can
utilize the interpretability of statistical features
combined with the strength of deep learning when
coupled with real-time sensor data from IloT
devices. An example of this level of merging would
be a dynamic data-driven design of weld quality that
utilized the contextual (numeric) as well as
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perceptual (visual) intelligences based on the data
source provided.

B. Comparison with Existing Methods: The
proposed hybrid model exhibits both greater
accuracy and stability over traditional statistical and
rule-based methods mainly because of the additional
feature driven logic and visual analytics facilitated
by the hybrid. Traditional models can flourish
primarily when a set of constant parameters can be
controlled for a process or product being monitored.
The hybrid model that utilizes the 10T enabled
sensors input (temperature or thermal profile, arc
voltage or current, or acoustic emissions signal)
provides adaptability to a wider variety of variations
in different parametric and operating conditions
feeding into the model to the point where the
traditional model would fail.

As noted by studies conducted independently, the
performance of an image based CNN is still greatly
sensitive to the dataset quality and quantity. The
accuracy we observed is at least within the
published range (60-75%) in outputs and,
technically, there was potential to improve if model
ensemble approaches were applied, or future sensors
contained more datasets for additional sensor-
fusion. Hybrid models that leverage image based
CNN's alongside easy-to-implement  driven
classifiers provide the logistical benefit of accessing
surface as well as the no less influential insight from
deep (structural) aspects of the problem.

C. Practical Implications: The implications of my
research  have significant industrial impacts
particularly with the automation of process
monitoring for SAW. The ease of the statistical
model and speed make it especially suited for
embedded systems (such as a record and screen
defect classification system) utilizing defect
classification that can be done continuously, and in
real time, whilst being on-device. When properly
integrated with 10T sensors and streaming, the
system can use the voltage, current, measured
temperature difference, and vibration along with
visual indicators to continuously evaluate the
integrity of a weld. CNN models are also designed
to support automated visual inspection frameworks

[TSSN 2583-2913]
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by applying high-dimensional image data analysis,
which are then deployed as light-weight Al models
(minimal ML framework) on inexpensive
processing devices (like Raspberry Pi or NVIDIA
Jetson). This edge interface allows organizations to
be less reliant on centralized computing
environments and enables distributed smart welding
systems utilizing visual quality control and
perceptual quality analysis. Combined, the statistical
and CNN models demonstrate a hybrid Al-loT
framework used to provide a better overall quality
assessment option. Utilizing sensor based analysis to
enhance image recognition and classification, and
with feature-based prediction, will ultimately
improve accuracy in recognizing defects, reduce
false positives, and provide better flexibility for
process adaptation in casual visual inspection
applications for major and micro fabricators in
sectors such as shipbuilding, construction, and
pipeline fabrication.
D. Limitations: While the results are promising,
several restrictions hinder the immediate application
of the proposed systems. The CNN model's
generalizability is limited due to insufficient training
data and a lack of multi-modal integration.
Additionally, the statistical model has limited
potential for adaptability in unstructured situations
because it is considered fully engineered features.
Moreover, the current model architecture does not
include real-time 10T sensor integration, limiting a
full picture of dynamic welding interactions. To be
suited for next-generation industrial use, models
must be capable of processing live sensor data
streams and adaptively learning variable field
conditions.

E. Future Work:Future studies will eventually

reach fully intelligent weld quality assessment

systems by using advanced Al, loT and edge
computing technology. Some possible areas of
future research to consider include:

e loT-Sensor Fusion of Multi-Modal Defect
Detection: This would combine, in a unified
hybrid model, thermal imaging, acoustic
emission, voltage/current waveforms, and vision
data. The use of sensor fusion will improve fault

Indian Journal of Science and Research. Vol.6 Issue-1

sensitivity, expand fault and capability
discovery, and allow context-sensitive-analysis
and real-time assessment.

e Hybrid Al Architectures: This includes
developing ensemble frameworks that combine
statistical classifiers, CNNs, and Recurrent
Neural Networks (RNNs), used together or
either trained jointly on history datasets or now
casting individual classifiers on-the-fly. This
will allow the capturing of multi-dimensional
defect behavior over time and space. These
types of systems would be great for adapting in
real-time based on the weld.

e Reinforcement Learning for Closed-Loop
Control: With the firmware updates to
embedded welders finally becoming common,
why not use the live sensor feedback to tune
parameters in RL? RL allows for scattered
collection of positive feedback in different
conditions to tune for optimized quality in-weld,
automatically.

e Edge Al Deployment: Deep learning models,
such as MobileNet, Tiny-YOLO, etc., can now
be compressed, weights quantized, and inference
accelerated for deployment on embedded
platforms. This will eliminate latency as walk-
out throughput and allow for extremely scalable

deployment across distributed production
facilities.
e Blockchain for Data Security and

Traceability: Blockchain with loT-enabled
welding systems gives a strong prospect for
providing  tamper-proof  defect  logging,
traceability of parts and compliance tracking —
all vital when working with safety-critical
applications.

e Augmented Reality (AR) for enhanced
inspection: By integrating AR systems with Al
systems, human inspectors can be displayed
real-time, visual overlays of defects identified
among welds, optimizing the level of accuracy
and collaborative effort during quality audits.

These enhancements will facilitate the advancement

toward having a powerful, intelligent, and

completely automated Weld Quality Monitoring

[TSSN 2583-2913]
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System that is suitable for an Industry 4.0 era and
for smart manufacturing initiatives.

Conclusion:  This  project  established a
comprehensive discussion of intelligent solutions to
assessing weld quality on Submerged Arc Welding
(SAW), unifying the traditional statistical modelling
and the new deep learning approach. The statistical
modelling showed a very suitable capability to
classify weld defects based on understandable and
measurable parameters when using the feature-based
modelling approach. It could consistently and
understandably articulate a definitive conclusion of
whether the weld defect was acceptable or not. This
leads to a strong argument that it is appropriate for
real-time quality control in the industrial welding
arena.

The Convolutional Neural Networks (CNN) model,
similarly demonstrated the power of image-based
analysis; particularly, the capacity to identify
complex visual anomalies and microstructural
differences that would be difficult to represent using
conventional features. The question of variability in
generalization will always remain, however, the
CNN model demonstrated the promise of automated
feature extraction to increase the accuracy of defect
detection on structures containing unstructured data.
The complementary advantages of statistical versus
deep learning approaches, open up possibilities for
the creation of hybrid Al systems that build upon
feature-based reasoning and visual pattern
recognition, providing more accurate, adaptable, and
robust systems for the assessment of weld quality,
that will work across a larger set of welding
conditions.

Future research could be directed towards hybrid Al
models that combine loT-enabled sensor data (e.g.

thermal, acoustic, electrical) and multi-modal
assessment, allowing for real-time, automated
decision-making. Within manufacturing

environments, the implementation of edge-compute,
offline decision-making, computation, and low
latency decentralized monitoring will become the
norm. In addition, there are opportunities for
synergy with advances in reinforcement learning for
confinement assessments, blockchain using project
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specific identifiers for secure data traceability
certification, and augmented reality-assisted
inspections towards the vision of a fully autonomous
nature-inspired intelligent welding ecosystem.

These advancements in electronic monitoring have
opened the door to the next generation of smart
data-driven weld quality monitoring solutions
aligned with Industry 4.0 principles and driving
improvements in efficiency, reliability, and safety in
critical industrial processes.
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